leanCoP: lean connection-based theorem proving
نویسندگان
چکیده
منابع مشابه
leanCoP: lean connection-based theorem proving
The Prolog program "prove(M,I) :append(Q,[C|R],M), \+member(-_,C), append(Q,R,S), prove([!],[[-!|C]|S],[],I). prove([],_,_,_). prove([L|C],M,P,I) :(-N=L; -L=N) -> (member(N,P); append(Q,[D|R],M), copy_term(D,E), append(A,[N|B],E), append(A,B,F), (D==E -> append(R,Q,S); length(P,K), K<I, append(R,[D|Q],S)), prove(F,S,[L|P],I)), prove(C,M,P,I)." implements a theorem prover for classical first-ord...
متن کاملleanCoP 2.0and ileanCoP 1.2: High Performance Lean Theorem Proving in Classical and Intuitionistic Logic (System Descriptions)
leanCoP is a very compact theorem prover for classical firstorder logic, based on the connection (tableau) calculus and implemented in Prolog. leanCoP 2.0 enhances leanCoP 1.0 by adding regularity, lemmata, and a technique for restricting backtracking. It also provides a definitional translation into clausal form and integrates “Prolog technology” into a lean theorem prover. ileanCoP is a compa...
متن کاملConnection-Driven Inductive Theorem Proving
We present a method for integrating rippling-based rewriting into matrix-based theorem proving as a means for automating inductive specification proofs. The selection of connections in an inductive matrix proof is guided by symmetries between induction hypothesis and induction conclusion. Unification is extended by decision procedures and a rippling/reverse-rippling heuristic. Conditional subst...
متن کاملLeant a P: Lean Tableau-based Theorem Proving
implements a rst-order theorem prover based on free-variable semantic tableaux. It is complete, sound, and eecient.
متن کاملleanTAP: Lean Tableau-Based Theorem Proving (Extended Abstract)
“prove((E,F),A,B,C,D) :!, prove(E,[F|A],B,C,D). prove((E;F),A,B,C,D) :!, prove(E,A,B,C,D), prove(F,A,B,C,D). prove(all(H,I),A,B,C,D) :!, \+length(C,D), copy_term((H,I,C),(G,F,C)), append(A,[all(H,I)],E), prove(F,E,B,[G|C],D). prove(A,_,[C|D],_,_) :((A= -(B); -(A)=B)) -> (unify(B,C); prove(A,[],D,_,_)). prove(A,[E|F],B,C,D) :prove(E,F,[A|B],C,D).” implements a first-order theorem prover based on...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Symbolic Computation
سال: 2003
ISSN: 0747-7171
DOI: 10.1016/s0747-7171(03)00037-3