leanCoP: lean connection-based theorem proving

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

leanCoP: lean connection-based theorem proving

The Prolog program "prove(M,I) :append(Q,[C|R],M), \+member(-_,C), append(Q,R,S), prove([!],[[-!|C]|S],[],I). prove([],_,_,_). prove([L|C],M,P,I) :(-N=L; -L=N) -> (member(N,P); append(Q,[D|R],M), copy_term(D,E), append(A,[N|B],E), append(A,B,F), (D==E -> append(R,Q,S); length(P,K), K<I, append(R,[D|Q],S)), prove(F,S,[L|P],I)), prove(C,M,P,I)." implements a theorem prover for classical first-ord...

متن کامل

leanCoP 2.0and ileanCoP 1.2: High Performance Lean Theorem Proving in Classical and Intuitionistic Logic (System Descriptions)

leanCoP is a very compact theorem prover for classical firstorder logic, based on the connection (tableau) calculus and implemented in Prolog. leanCoP 2.0 enhances leanCoP 1.0 by adding regularity, lemmata, and a technique for restricting backtracking. It also provides a definitional translation into clausal form and integrates “Prolog technology” into a lean theorem prover. ileanCoP is a compa...

متن کامل

Connection-Driven Inductive Theorem Proving

We present a method for integrating rippling-based rewriting into matrix-based theorem proving as a means for automating inductive specification proofs. The selection of connections in an inductive matrix proof is guided by symmetries between induction hypothesis and induction conclusion. Unification is extended by decision procedures and a rippling/reverse-rippling heuristic. Conditional subst...

متن کامل

Leant a P: Lean Tableau-based Theorem Proving

implements a rst-order theorem prover based on free-variable semantic tableaux. It is complete, sound, and eecient.

متن کامل

leanTAP: Lean Tableau-Based Theorem Proving (Extended Abstract)

“prove((E,F),A,B,C,D) :!, prove(E,[F|A],B,C,D). prove((E;F),A,B,C,D) :!, prove(E,A,B,C,D), prove(F,A,B,C,D). prove(all(H,I),A,B,C,D) :!, \+length(C,D), copy_term((H,I,C),(G,F,C)), append(A,[all(H,I)],E), prove(F,E,B,[G|C],D). prove(A,_,[C|D],_,_) :((A= -(B); -(A)=B)) -> (unify(B,C); prove(A,[],D,_,_)). prove(A,[E|F],B,C,D) :prove(E,F,[A|B],C,D).” implements a first-order theorem prover based on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Symbolic Computation

سال: 2003

ISSN: 0747-7171

DOI: 10.1016/s0747-7171(03)00037-3